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SUMMARY & CONCLUSIONS 

 

P-F Curves are ubiquitous in the maintenance 

departments of industries, where it is used to explain the 

concept of an asset exhibiting symptoms of a failure 

before it experiences failure. This prognostication has 

been labeled as the effective way to plan maintenance 

programs. Though it is correct, the relentless push for its 

use using non-destructive prognostics tools has changed 

its meaning and interpretation by many end-users. Few 

curves are being drawn with ‘vibration analysis’ marked 

only in the region after a potential failure giving a 

misleading guide that this tool can be applied only after a 

failure has started. We are rescripting this by highlighting 

the fundamentals of the P-F Curve, as originally 

formulated, to train the readers for its use in everyday 

maintenance operations. The first half of the paper goes 

into detail on the foundations of the P-F Curve, the terms, 

and its definitions. It also briefs on how to choose the 

setup of these curves for an application. Following the 

steps described here will enable maintenance personnel to 

generate a P-F Curve and use the insight to plan 

maintenance work.  

The second half of the paper combines the 

fundamentals of the curves with Machine Learning 

techniques. This union of ideas is the natural extension of 

the way to push the boundaries of maintenance 

optimization. We describe how to supplement the 

traditional P-F Curve with Machine Learning by using the 

asset’s performance data; to garner information in real 

time; to estimate its behavior; to use as feedback to 

improve the setup. This causes the curve to evolve into a 

dynamic plot and enhance the detection of failure by 

utilizing multiple parameters instead of a univariate. 

Finally, the pitfalls of using this new technology to 

support the P-F Curves is briefly discussed to serve as a 

caution to the user.  

1  INTRODUCTON 

The P-F Curve may be one of the most covered 

topics in the Reliability Engineering field. Since its 

proposal it has been adapted by the maintenance teams in 

various industries and has evolved into an over-arching 

idea to incorporate many unrelated Maintenance and 

Reliability concepts, thereby complicating its 

applicability for everyday use. Recommendations from 

the Reliability-Centered Maintenance framework 

includes Inspection tasks on assets to prompt a 

maintenance action but the misinterpretation of the P-F 

Curve results in mistiming the inspection or the tool used, 

or the parameter documented. The rest of this paper 

simplifies the current heavily burdened P-F Curve by 

revisiting the fundamentals and proposes a framework for 

enhancing the curve by using Machine Learning to create 

a dynamic curve that is continuously updated based on 

the current dataset.  

2   P-F CURVE DEMYSTIFIED 

The P-F Curve traces an item’s degradation, based 

on predetermined parameters such as vibration or 

temperature, from a condition of high “resistance to 

failure” to one of low “resistance to failure” (Y axis) over 

the item’s operating time or cycles or age (X axis). See 

Figure 1.  

As the term “resistance to failure” implies, an item 

moving along the curve, over time, becomes less and less 

able to resist failure until it ultimately fails to perform its 

function to the degree specified.  

The two main points on the P-F Curve are the “P” 

and “F” points, where the P stands for Potential Failure, 

and the F stands for Functional Failure.  A failure is 

simply described by Nowlan and Heap [1, 2] as “an 

unsatisfactory condition”; with a Functional Failure 

defined as “the inability of an item (or the equipment 

containing it) to meet a specified performance standard” 

and a Potential Failure is defined as “an identifiable 

physical condition which indicates a functional failure is 

imminent”.  We describe the physical condition at the 

Potential Failure point as the mechanism leading to the 

failure mode, example: abrasive wear (mechanism) 

ultimately leading to a seized bearing (failure mode).   

A Potential Failure is often described today as “the 

point on the P-F Curve at which degradation begins” or 

“the point at which a defect can be detected” but this is a 

misunderstanding of Nowlan and Heap’s work.  While it 

is true that P is the point at which functional failure is 



imminent, the “degradation”(i.e., failure mechanism) 

initiates earlier on the curve and may be evident (a small 

crack); but its condition is still within acceptable limits 

and therefore no corrective action is required.  As a result 

of this misunderstanding, Point P is often believed to be 

“given” to us by a default condition such as “crack 

identified”, when in practice Point P is chosen by the 

Reliability Engineer as the limit by which, if no corrective 

action is taken, the functional failure (F) is imminent 

within the timeframe estimated on the P-F Curve.  The 

elapsed time from the Points P to F is called the P-F 

Interval (see Figure 1 ) and it is the “age” it takes for an 

item to deteriorate from the Potential Failure condition to 

Functional Failure. The dots represent points on the P-F 

Curve where events occur.  These points occur within the 

zones of the curve as described 

 

Figure 1: P-F Curve with P-F Interval.  

2.1  Developing a P-F Curve Estimate 

To develop a P-F Curve estimate we first need to 

establish an item’s functions, then we can explore how 

the item fails to meet these performance expectations as 

functional failures.  An example of a primary function for 

a pump is “to pump water at 100 gpm +0/-5 GPM at 100 

PSI” and a secondary function is “to contain water 

without leaks”.   A Functional Failure then may be 

expressed as “cannot pump water greater than or equal to 

95 GPM at 100 PSI” and another is “cannot pump water 

at all”.  The causes for these losses of functions are called 

Failure Modes. Of the many failure modes, one of them 

causing the secondary functional failure may be a “seized 

bearing”.   

The Reliability Engineer (RE) must understand the 

failure mode(s) to determine the identifiable physical 

mechanism(s) and the precise evidence (PMPE) by which 

the mechanisms are recognized, indicating that a 

functional failure is imminent.  Figure 2 shows this 

relationship. 

Once the identifiable physical mechanisms can be 

understood and recognized, the RE must choose a point 

on the curve to denote the Potential Failure limit. The 

optimal limit for P must be a point that will allow the 

maintenance department sufficient time to take corrective 

action and restore resistance to the item prior to the 

functional failure, while also not correcting an item that 

still has substantial useful life.     

 

Figure 2: Physical Mechanism and Precise Evidence 

(PMPE) 

Once the potential failure limit has been determined, 

the RE should select applicable and effective On-

condition tasks to detect these conditions and take 

corrective action to prevent functional failure of the item 

when the conditional limits are exceeded.   

In the case of “seized bearing”, one mechanism 

leading to this failure mode is “abrasive wear” and can be 

precisely evidenced via Vibration (IPS, G’s, Mils) and 

Ultrasonic Emissions (dB) among others.  The RE should 

assign these On-condition tasks, or other applicable and 

effective inspections, to be collected using route-based 

techniques at a frequency of least ½ the P-F Interval to 

ensure that the potential failure condition is detected and 

that corrective actions can be properly planned and 

scheduled prior to functional failure.   

Detecting the moment that our limit at Point P has 

been reached can be difficult when manually inspecting 

the conditions using hand-held route-based devices. It is 

very likely that the limit has already been exceeded by the 

time the inspection is performed or in worse cases Point 

P can be missed by as much as the duration of the 

inspection frequency, example: 30 days for a monthly 

inspection.  The elapsed time between the point of 

detection of Point P and the Point F is called the Net P-F 

Interval.  This is a more realistic view of how much time 

we have to plan and schedule a corrective action of the 

item when performing route-based inspections.  If we 

wait too long to detect the degradation, we may not be 

able to act in time to prevent the functional failure.  For 

this reason, we must ensure that our frequency of 

inspections is sufficient to allow the maintenance 

department to properly plan and schedule the corrective 

action.  A best practice inspection frequency is one half 

the P-F Interval, example: if the P-F Interval equals eight 

weeks, then the inspection frequency should be 8 weeks / 

2, or 4 weeks.  If the inspection frequency is fixed, i.e., a 

vendor contract to come in at a specified frequency, then 

Point P will need to be adjusted higher on the P-F Curve 



to accommodate the inspection frequency and still 

maintain a Net P-F Interval sufficient for maintenance to 

act. 

 

Figure 3: Net P-F Interval 

2.2. P-F Curve Estimate Factors 

As evident from Figure 3, inspection frequency is a 

crucial factor in designing a maintenance strategy from P-

F Curve. The inspection interval influences the location 

of Point P on the curve. There are additional factors that 

also influence the location of Point P. They are Asset 

Criticality, Spare Part Lead Time, and Decay Rate.  

For an asset that is highly critical in the operations, 

the RE will choose to set the Point P little earlier to allow 

for variations in maintenance execution. Similarly, if the 

Spare Part Lead Time changes, then the team must start 

the maintenance intervention at an appropriate point of 

potential failure detection to account for the availability 

of the spare part. The rate at which the asset’s resistance 

to failure is decaying will have the significant effect on 

the limit of Point P as explained in the next section.  

 

2.3  Decay rate: PE vs PF 

An asset’s exposure to stress does not always remain 

constant and may not stay within the designed levels. 

When a single stress or combined stresses reduce an 

item’s resistance to failure sufficiently, a functional 

failure will occur sooner. These exposed stresses will 

reduce the useful life of an item considerably due to the 

accelerated rate of deterioration.  With this increase in the 

rate of decay, the estimated P-F Interval may no longer 

apply, and corrective action will be required sooner than 

normally anticipated 

For example, a bearing that is not installed correctly 

may pass commissioning requirements for initial 

vibration and temperature but endures  accelerated rate of 

deterioration from the exposed stress [5].  In this scenario, 

by the time the estimated Point P (PE) is reached, the 

forecasted remaining life may be reduced by 50 percent 

or more from the original estimates.  Trending the actual 

rate of deterioration against historical estimates allows 

new data to plug  into the equation.  If Point PE  hasn’t 

been reached yet, but the rate of change has sufficiently 

increased, then PE should be moved up to reflect the 

imminence of the Functional Failure.  The new Point P is 

called Potential Failure Forecast (PF) and reflects 

conditions on the ground.  As PF shifts higher and higher 

on the P-F Curve, the severity of the preventive 

maintenance action and its priority must be raised to 

ensure the work is scheduled and executed prior to 

Functional Failure.  See Figure 4. 

 

Figure 4: Forecasted P-F Curve due to Exposed 

Stresses 

If the Decay Rate of the Estimated P-F Curve is 

(DRE)  and the Decay Rate of the current Forecasted P-F 

Curve is (DRF), then the ratio of the rates can quickly 

identify the change in P-F interval.  

Decay Rate Ratio = DRE / DRF                 (1) 

If the Decay Rate Ratio >1, then the P-F interval is 

shrinking and if the Decay Rate Ratio <1, then the P-F 

interval is expanding. Due to inherent variability in the 

operation, two curves will always be different in 

comparison giving different decay rates. Two-sided limits 

shall be set on the Decay Rate Ratio to trigger a change 

in the definition of Potential Failure Point, only when its 

value is significantly out of the average.  

An asset’s exposure to varying stresses can also be 

incorporated into its P-F Curve through its S-N Curve 

(Stress-Life Curve). S-N Curve  represents the relation 

between the accumulation of fatigue cycles and the asset 

life. Asset exposed to high amplitude stress for a short 

time and then operated at standard conditions should 

account for the lost age at the spike. This results in a 

modified P-F Interval and a modified location of Potential 

Failure Point to plan maintenance action. Modification of 

the curve set up should consider the maintenance action 

performed; a replacement of the asset will restore the P-F 

Curve whereas a repair will keep the new set up.  

While the P-F Curve’s use is beneficial, it is only an 

“estimate” of the future performance and remains static 

or unchanging throughout its use.  Since the curve gets 

created and adopted for a failure mode based on a set of 

assumptions and operating conditions, there is no way to 



update it based on the new operating conditions or 

stresses on the ground.  If any of these conditions change 

from the historical trend, the P-F Curve and the strategies 

based upon it may no longer be valid and could lead to an 

unscheduled downtime event. A better approach is to use 

Machine Learning that supports real-time optimization of 

the curve. 

3  USING MACHINE LEARNING TO SUPPLEMENT 

THE P-F CURVE MODELS 

An efficient maintenance program is one which is 

continuously being optimized by using new performance 

data. Literature [6] in this research area outlines the need 

for organizations to prepare the collection of real-time 

data from assets and respond to it throughout its operating 

life. Continuously monitoring for new data throughout 

the asset life and re-plotting the P-F Curve will stretch the 

resources of any organization. Fortunately, there are 

affordable technologies available now that we could 

adapt to assist in continuous monitoring. Utilizing the 

infrastructure of the Industrial Internet of Things (IIoT), 

sensors can monitor the performance of critical assets and 

report back instantaneously. Since variability is inherent 

in all design, using point estimates from one asset to plot 

the P-F Curve for maintenance planning can be 

unreliable. Collecting numerous point estimates from a 

population of assets or from different usage conditions 

can help establish a baseline P-F Curve with a high 

confidence interval that will work in most conditions. 

Machine Learning (ML) tools should be applied at this 

stage to optimize the data and fit a curve. This can be 

validated as more data is used to train or when the 

Prediction decisions are verified.  

The framework to apply Machine Learning for P-F 

Curves is given in Figure 5. The ‘Parameters’ for the 

model are the detectable-defining-characteristic of the 

failure mechanism (example: vibration g’s for bearing 

failure, thickness for brake pad wear out). ‘Inputs’ are the 

data from the current operating conditions (current 

reading, time elapsed, average maintenance response 

time, repair cost). With these set up, a P-F Curve can be 

generated that establishes the Potential Failure point and 

the P-F Interval. Maintenance team should use this 

information in deciding the appropriate action on the 

asset. This framework is best executed when the outcome 

from it is used as feedback to improve its set up. The  P-

F interval predicted by the algorithm can be used to 

modify the ‘Inputs’(𝑭𝒃)  in the form of changing the 

maintenance response time, work order priority, or data 

collection frequency. The accuracy of the prediction 

(Goodness-of-fit)  can be evaluated to identify additional 

parameters (𝑭𝒄) that are influencing the failure 

mechanism and can be added as ‘Parameters’ to monitor. 

The outcome of the decisions made by the Maintenance 

Team can also be used to improve the setup of the P-F 

Curve (𝑭𝒂) by validating the mechanism being  observed 

and the  ‘Parameters’ & ‘Inputs’ used.  

 

Figure 5:  Framework to apply Machine Learning for   

P-F Curve plotting 

Applying Machine Learning tools to generate P-F 

Curves negates the practical short-comings of the curve 

such as the curve not being up to date or the curve not 

fully capturing the failure mode behavior. We shall 

generate dynamic P-F Curves that change in real-time as 

the operating condition changes and shall  also use 

multivariate regression analysis to capture the effects of 

all input parameters of a failure mode to model its 

performance degradation.  

3.1   Dynamic P-F Curves 

When the data being fed into the Regression 

Analysis is dynamic, the analysis provides dynamic 

model equations with the input ‘Parameter’ as its 

variable. When this input parameter changes 

unexpectedly- due to Operator Error or Increased load or 

External Stress – then the equation plots a different curve. 

This change can predict the new curve path and plot the 

new Failure state immediately. For example, in Figure 6: 

Curve A shows the predicted P-F Curve under normal 

operating conditions predicted from historical normal 

operation data. Curve B shows the P-F Curve for the same 

asset changing due to an increase in output demand.  The 

P-F interval may also change due to its increased 

degradation and the P point changes correspondingly to 

give the maintenance team ample time to respond.  

The change in stresses should be recorded 

quantitatively using additional data collection sensors 

pertinent to the failure mechanism chosen. Accumulation 

of fatigue is be calculated from this data as Stress x Time 

where ‘Stress’ is the amplitude and ‘Time’ is the time 

spent at this amplitude. With this data, a P-F Curve should 

be plotted at each fatigue levels for the same asset. 

Collecting dynamic curves of an asset over time will 



enable the Reliability Engineer to record the range of 

behavior in all use cases.  

 

Figure 6:  P-F Curves for the same asset can be 

Dynamic 

3.2  Multivariate P-F Curves 

If a critical asset has a failure mode, that is 

influenced by more than one ‘Parameter’ then a 

multivariate regression analysis [3, 4] can be used to plot 

the P-F Curve. The choice of parameters will depend on 

the failure mechanism and driven by the knowledge of the 

team. The team can use the literature to understand the 

physics of failure  (PoF) or conduct own experiments 

(Reliability Testing) to determine the significant 

parameters affecting the failure mechanism. These 

parameters will be monitored continuously to feed into an 

algorithm and estimate the baseline degradation model 

with high confidence level.  This method can be 

combined with the dynamic method described above to 

plot multivariate dynamic P-F Curves.  

 

Figure 7: Using Multivariate Regression leads to better 

estimation of P-F Curve  

While combining the methods of plotting a P-F 

Curve using Machine Learning, it is evident that the 

algorithm can give us insights on where the points of the 

P-F Curve are expected to be based on the current asset 

trend data. 

This is represented in Figure 8 and uses a 

combination of extrapolation data and the historical trend 

of assets in the same population. This awareness will help 

the maintenance team in planning for the expected 

intervention; either for detection of imminent failure at 

“P” point or the observation of actual functional failure at 

“F” point.  

Figure 8: Machine Learning can forecast the region of 

P and F points of the P-F Curve 

4  PITFALLS IN USING MACHINE LEARNING FOR 

P-F CURVES 
General things to consider while developing a 

maintenance program with machine learning are: 

Choice of asset, failure mode, and parameter: Use 

Criticality Analysis methods to determine the dominant 

failure mechanism of the critical asset and implement 

Machine Learning solution on it.  

Data integrity: The data that is used to plot P-F Curve 

should have the attributes for machine learning. Corrupt 

or unlabeled data will lead to inaccuracy in the results.  

Using the correct algorithm: The type of decision that the 

Maintenance team intends to make will determine the 

choice of the algorithm – regression, clustering, or 

classification.  

Integrating with the Maintenance Program: Using 

Machine Learning tools as a standalone solution will not 

improve the effectiveness of the Maintenance program 

unless it is integrated with the workflow of the 

Maintenance Program. Any alerts generated by the 

dynamic P-F Curve must be notified and worked on by  

the Maintenance Team with priority determined by the  

estimated Net P-F interval and the current P Point.  

5   FUTURE WORK 

The authors intend to expand the work by 

implementing the concepts in this paper to a practical 

application and present the results with data. The field of 

Machine Learning is advancing at breakneck pace with 

new algorithms, capabilities, and features. The usability 

of these new tools for Reliability & Maintenance needs to 

be explored through practical solutions of installing the 

data collection infrastructure, training users on data 

analysis & interpretation. An industry wide guidance on 

the implementation & operation of Machine Learning 



augmented Maintenance Program is within the scope of 

future work.  
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